
CFL3D User’s Manual 79

6
CHAPTER 6 Boundary Conditions

The equations of motion require boundary conditions on all sides of the domain in
which the solution is to be obtained, as well as on all surfaces of any objects which lie
within the domain. For CFD methods, this implies that boundary conditions must be
applied at each face of each computational block. Here, the term boundary conditions is
used somewhat loosely as it refers to both physical conditions (e.g. solid wall, symmetry
plane, etc.) and interfaces between adjacent or overlapped blocks.

In CFL3D, the boundary condition data are located in the arraysqi0(jdim,kdim,5,4),
qj0(kdim,idim-1,5,4), andqk0(jdim,idim-1,5,4) for the , , and directions, respec-
tively. The third index in the arrays indicates the position for the five flow-field primitive
variables (Equation (E-3)). The fourth dimension indicates the storage location for the
boundary value positions; indices 1 and 2 are the positions for the boundary data at the left
face and indices 3 and 4 are the positions for the boundary data at the right face. “Left
face” here refers to the= 1, = 1, and = 1 faces. “Right face” refers to the = idim,

= jdim, and = kdim faces.

Note that the locations defining the boundary condition regions in “LT14 - I0 Bound-
ary Condition Specification” through “LT19 - KDIM Boundary Condition Specification”
aregrid points, but the actual boundary conditions are applied atcell-face centers.

For example, say that Figure6-1 represents the surface of a wing. At the unshaded
cells, it is desired to apply a heated wall boundary condition, while at the shaded cells it is

Figure 6-1. Boundary condition segments.

i j k

i j k i

j k

i = 1 i = 5

j = 1

j = 4
 Segment 2 Segment 3

 Segment 1

CHAPTER 6 Boundary Conditions

80 CFL3D User’s Manual

desired to apply an adiabatic wall boundary condition. One way to accomplish this objec-
tive would be to divide theK0 boundary condition into three segments, as indicated by the
dashed lines in the figure. The CFL3D input file would look like this:

Line Type
18 K0: GRID SEGMENT BCTYPE ISTA IEND JSTA JEND NDATA

1 1 2004 1 5 1 2 2
twtype Cq
1.6 0.0

1 2 2004 1 3 2 4 2
twtype Cq
1.6 0.0

1 3 2004 3 5 2 4 2
twtype Cq
0.0 0.0

Note that, for example, thegrid points to 5, to 2 define the boundary of the
cells at which the boundary condition type for segment 1 is applied.

Two types of boundary condition representations are employed in CFL3D, namely,
cell-center and cell-face. For cell-center type boundary conditions, the flow-field variables
are specified at “ghost” points corresponding to two cell-center locations analytically
extended outside the grid as illustrated in Figure6-2. For example,qi0(, ,l,1) contains

the boundary data at the ghost point locations right next to the = 1 cell-center data and

qi0(, ,l,2) contains the boundary data in the second set of ghost point locations at the

left boundary. Likewise,qi0(, ,l,3) contains the boundary data at the ghost point loca-

tions right next to the = idim cell-center data andqi0(, ,l,4) contains the boundary
data in the second set of ghost point locations at the right boundary. The same boundary
data location definitions apply for theqj0 andqk0 arrays.

For cell-face type boundary conditions, the flow-field variables and their gradients are
specified at the cell-face boundary as illustrated in Figure6-3. For cell-face type boundary
conditions,qi0(, ,l,1) contains the flow-field variable data at the= 1 grid cell-face and

qi0(, ,l,2) contains the flow-field variable gradients at the= 1 grid cell-face. Likewise,

qi0(, ,l,3) contains the flow-field variable data at the = idim grid cell-face and

qi0(, ,l,4) contains the flow-field variable gradients at the= idim grid cell-face. The
same boundary data location definitions apply for theqj0 andqk0 arrays.

Note that when running in 2-d mode (i2d = 1), it does not matter what boundary con-
ditions are used on the= 1 and = idim faces (provided that the boundary condition
itself does not require more than one interior cell).Bctype is generally set to 1002 on
these faces.

Boundary conditions for the eddy viscosity are stored invi0, vj0, andvk0, while
boundary conditions for the field equation turbulence models are stored inti0, tj0, and
tk0. Both of these are cell-center type, although only the first ghost points (1 and 3) are
used. The field equation turbulence model boundary conditions are described in more
detail in SectionH.7 on page296.

i 1= j 1=

j k

i

j k

j k

i j k

j k i

j k i

j k i

j k i

i i

CFL3D User’s Manual 81

6 Boundary Conditions

Figure 6-2. Cell-center type boundary locations.

Figure 6-3. Cell-face type boundary conditions.

Cell-Center Points on Grid

Cell-Center Boundary Points

12 3 4

Cell-Center Points on Grid

Cell-Face Boundary Points

Gradients on Boundary Edge

1, 2 3, 4

CHAPTER 6 Boundary Conditions

82 CFL3D User’s Manual

6.1Physical Boundary Conditions

The 1000 series of boundary condition types are used for physical boundary condi-
tions and are specified at any of a block’s six faces in “LT14 - I0 Boundary Condition
Specification” on page32 through “LT19 - KDIM Boundary Condition Specification” on
page35. In each case,ndata = 0, since no additional information is required for imple-
mentation of the condition. The 1000 series boundary condition types currently supported
are as follows:

 6.1.1Free Stream

bctype 1000

The free stream boundary conditions are cell-center type boundary conditions. The
five flow-field variables for both sets of ghost points are set equal to the initial values,
which are:

(6-1)

where .

bctype boundary condition
1000 free stream
1001 general symmetry plane
1002 extrapolation
1003 inflow/outflow
1004 (no longer available, use 2004 instead)
1005 inviscid surface
1008 tunnel inflow
1011 singular axis – half-plane symmetry
1012 singular axis – full plane
1013 singular axis – partial plane

ρini tial 1.0=

uini tial M∞ α βcoscos=

vini tial M– ∞ βsin=

wini tial M∞ α βcossin=

pini tial ρini tial aini tial()2 γ⁄=

aini tial 1.0=

CFL3D User’s Manual 83

6.1.2 General Symmetry Plane

 6.1.2General Symmetry Plane

bctype 1001

The symmetry plane boundary conditions are cell-center type boundary conditions. As
the name implies, symmetry is assumed across an axis. The ghost point density values are
set equal to their “mirror image” counterparts. With the points defined as in Figure6-4,

(6-2)

(Note that = qi0(j,k,1,1) at the = 1 face, for example.) The pressure values are

assigned in the same way.

 The velocity components at the ghost cells are obtained as follows. Consider ghost

cells at an face. Note that the normalized contravariant velocity is normal to an

= constant face. Let be the normalized contravariant velocity at cell center 1 in

Figure6-4. For an symmetry plane, must have opposite signs on each side of the
plane. Thus

(6-3)

where , , and are the metrics (unit normals) at the face.

Figure 6-4. Symmetry boundary conditions (bctype 1001) for density.

Cell-Center Points on Grid

Cell-Center Boundary Points

ρ1 ρ2ρ-1ρ-2

ρ 1– ρ1=

ρ 2– ρ2=

ρ 1– i

i 1= U i

U1

i U

u 1– u1 2ξ̂xU1–=

v 1– v1 2ξ̂yU1–=

w 1– w1 2ξ̂zU1–=

ξ̂x ξ̂y ξ̂z i 1=

CHAPTER 6 Boundary Conditions

84 CFL3D User’s Manual

Since , . The velocity components at ghost cell

center –2 are set in a similar manner using the data at cell center 2. (Note that this is now a
“general” symmetry condition, applicable to any plane, not just the plane as in ear-
lier versions of the code. Consequently, there is no longer abctype 1006.)

 6.1.3Extrapolation

bctype 1002

The extrapolation boundary conditions are cell-center type boundary conditions. The
ghost points are extrapolated from the computational domain. Based on the locations of

 and depicted in Figure6-4, the extrapolated values would be

(6-4)

The same zeroth order extrapolation is used for the boundary values of the other four flow-
field variables.

 6.1.4Inflow/Outflow

bctype 1003

The inflow/outflow boundary conditions are cell-face type boundary conditions. In the
far field, the velocity normal to the far boundary (pointingout of the grid) and the speed of
sound are obtained from two locally 1-d Riemann invariants:

(6-5)

where the boundary is considered a surface of constant (in this example) with decreas-

ing corresponding to the interior of the domain and

(6-6)

(6-7)

R– can be evaluated locally from conditions outside the computational domain and R+ can
be determined locally from inside the domain. The normal velocity and speed of sound are
determined from

ξ̂x()
2

ξ̂y()
2

ξ̂z()
2

+ + 1= U 1– U1=

x z–

ρ1 ρ 1–, ρ 2–

ρ 1– ρ1=

ρ 2– ρ1=

R u
2a

γ 1–
-----------±≡

ξ
ξ

u U
ξt

∇ξ
----------–=

U
ξx

∇ξ
----------u

ξy

∇ξ
----------v

ξz

∇ξ
----------w

ξt

∇ξ
----------+ + +=

CFL3D User’s Manual 85

6.1.4 Inflo w/Outflo w

(6-8)

The Cartesian velocities are determined by decomposing the normal and tangential veloc-
ity vectors:

(6-9)

For inflow, . For outflow, represents the values from the cell inside the
domain adjacent to the boundary.

The sign of the normal velocity determines whether the

condition is at inflow () or outflow (). The entropy is deter-

mined using the value from outside the domain for inflow and from inside the domain for
outflow. The entropy and speed of sound are used to determine the density and pressure on
the boundary:

(6-10)

Note that wheni2d = –1, the 1003 boundary condition is augmented by the far-field
point-vortex correction38 (for 2-d, plane only).

u face
1
2
--- R

+
R

–
+()=

a face
γ 1–

4
----------- R

+
R

–
–()=

u face uref

ξx

∇ξ
---------- u face uref–()+=

v face vref

ξy

∇ξ
---------- u face uref–()+=

w face wref

ξz

∇ξ
---------- u face uref–()+=

ref ∞⇒ ref

U face u face ξt ∇ξ⁄+=

U face 0< U face 0> p ργ⁄

ρ face

a face()2

γ sface

1
γ 1–

=

p face

ρ face a face()2

γ
--------------------------------=

x z–

CHAPTER 6 Boundary Conditions

86 CFL3D User’s Manual

 6.1.5Inviscid Surface

bctype 1005

The inviscid surface boundary conditions are cell-face type boundary conditions. The
cell-face boundary values for density are approximated with the density values of the near-
est cell-center points on the grid. With the points defined as in as Figure6-5,

(6-11)

The boundary values for pressure are obtained in the same manner.

The velocity component normal to the surface is set to zero in the following manner.
Assume that the surface in Figure6-5 is a = constant surface, for which the metrics (unit

normals) are , , and . Then the normalized contravariant velocity (normal to the
direction) at cell center 1 is

(6-12)

The velocity components at the wall are then calculated using

(6-13)

Using , it may be seen that so that the normal velocity

at the wall is zero.

The gradient values for all five flow-field variables needed at the cell-face are obtained
using two-point differences. For example, for density,

Figure 6-5. Inviscid surface boundary condition (bctype 1005) for density.

 ρ1 ρ2
ρ0

Cell-Center Points on Grid

Cell-Face Boundary Points

Gradients on Boundary Edge

ρ0 ρ1=

k

ζ̂x ζ̂y ζ̂z k

W1 u1ζ̂x v1ζ̂y w1ζ̂z ζ̂t+ + +=

u0 u1 ζ̂xW1–=

v0 v1 ζ̂yW1–=

w0 w1 ζ̂zW1–=

ζ̂x()
2

ζ̂y()
2

ζ̂z()
2

+ + 1= W0 0=

CFL3D User’s Manual 87

6.1.6 Constant Enthalp y and Entr opy Inflo w

(6-14)

 6.1.6Constant Enthalpy and Entropy Inflow

bctype 1008

The constant enthalpy and entropy boundary condition (sometimes referred to as the
wind tunnel inflow boundary condition) is a cell-center type condition. A grid set up to use
the tunnel inflow condition should always have the coordinate running along the length
of the tunnel as shown in Figure6-6. It is assumed that the entropy and the enthalpy are at
the free-stream conditions. The and components of velocity are set to zero and the
pressure gradient at the boundary is also zero. The density at the boundary is obtained
from

(6-15)

The component of velocity is obtained from

(6-16)

The zero pressure gradient condition is used to set the pressure in the ghost cell equal to
the nearest interior value.

For running internal (wind tunnel type) flows, bctype 2003 is usually preferred as the
inflow boundary condition over 1008, although both may work. For the corresponding
wind tunnel outflow boundary condition,bctype 2002 should generally be used.

Figure 6-6. Constant enthalpy and entropy inflow boundary conditions (bctype 1008).

ρ∇ 2 ρ1 ρ0–()=

H = H∞

s = s∞

v = 0

w = 0

p
�
x = 0

x

V∞

x

v w

s∞
p

ργ-----=

u

H∞
a

2

γ 1–
----------- u

2

2
-----+=

CHAPTER 6 Boundary Conditions

88 CFL3D User’s Manual

 6.1.7Singular Axis Using Half-plane Symmetry

bctype 1011

The singular axis using half-plane symmetry boundary conditions are cell-center type
boundary conditions. As an example of this boundary condition, assume the singular axis
occurs at = 1. If jdim = 5, an = constant plane might look like the one drawn in

Figure6-7. In the figure, the subscripts for are and then (i.e.). The boundary

values for density are assigned as

(6-17)

The other four flow-field variables are assigned in a similar fashion; however, the normal-
ized contravariant velocities and metrics are used to determine the correct signs for the

Figure 6-7. Singular axis with half-plane symmetry boundary condition (bctype 1011).

Cell-Center Points on Grid

Cell-Center Boundary Points

ρ1,1

ρ2,1

ρ2,2

ρ1,2

ρ4,–1

ρ3,–1

ρ3,–2

ρ4,–2

ρ3,1

ρ3,2

ρ4,2

ρ1,–1

ρ2,–1

ρ2,–2

ρ1,–2

 j

k

ρ4,1

k i

ρ j k ρ j k,

ρ1 1–, ρ4 1,= ρ1 2–, ρ4 2,=

ρ2 1–, ρ3 1,= ρ2 2–, ρ3 2,=

ρ3 1–, ρ2 1,= ρ3 2–, ρ2 2,=

ρ4 1–, ρ1 1,= ρ4 2–, ρ1 2,=

CFL3D User’s Manual 89

6.1.8 Singular Axis Using Full Plane , Flux Specified

velocity components in a manner similar to boundary condition type 1001. First note that
by the assumption of half-plane symmetry, the direction cosines on are the same as

 apart from the sign; let these metrics be denoted, , and . Then, for

example,

(6-18)

(6-19)

 6.1.8Singular Axis Using Full Plane, Flux Specified

bctype 1012

Figure 6-8. Singular axis using full plane boundary condition (bctype 1012).

j 1=

j jdim= η̂x η̂y η̂z

V4 1, u4 1, η̂x v4 1, η̂y w4 1, η̂z η̂t+ + +=

u1 1–, u4 1, 2η̂xV4 1,–=

v1 1–, v4 1, 2η̂yV4 1,–=

w1 1–, w4 1, 2η̂zV4 1,–=

Cell-Center Points on Grid
Cell-Face Boundary Point
Gradient on Boundary Edge

ρ1,1

ρ2,1

ρ2,2

ρ1,2

ρ8,1

ρ7,1

ρ7,2

ρ8,2

ρ3,1

ρ3,2

ρ4,2

ρ5,1

ρ6,1

ρ6,2

ρ5,2

 j

k

 ρ4,1

CHAPTER 6 Boundary Conditions

90 CFL3D User’s Manual

The singular axis using full plane boundary conditions are cell-face type boundary
conditions. As an example of this boundary condition, assume the singular axis occurs at

= 1. If jdim = 9, an = constant plane might look like the one drawn in Figure6-8. In

the figure, the subscripts for are and then (i.e.).

For the cell-face boundary point value of density (), an average value of all the val-

ues at = 1 is obtained, i.e.

(6-20)

The flux value is obtained with a two point extrapolation using and :

(6-21)

The boundary values for all five flow-field variables are assigned as described for density.

A known problem exists when using this boundary condition with the Baldwin-Lomax
turbulence model. In such cases, the code employs the “wall” Baldwin-Lomax equation
option rather than the “wake” Baldwin-Lomax equation option at the 1012 boundary.

 6.1.9Singular Axis Using Extrapolation (Partial Plane)

bctype 1013

The singular axis using extrapolation boundary conditions are cell-center type bound-
ary conditions. The ghost points are extrapolated from the computational domain. This
boundary condition is used with singular axes for which neither boundary condition type
1011 or 1012 is appropriate (quarter planes, for instance). For example, the density bound-
ary values would be approximated as

(6-22)

The same first order extrapolation is used for the boundary values of the other flow-field
variables.

 6.1.10A Word About Singular Metrics

Version 5.0 will automatically detect collapsed grid lines (e.g. singular metrics, cell
faces with zero area) on block boundaries. (Collapsed grid lines in the “interior” of a block

k i

ρ j k ρ j k,

ρ0

k

ρ j 0,

ρ j 1,
j 1=

jdim 1–

∑
jdim 1–

--------------------------=

ρ1 ρ0

ρ∇() j 2 ρ j 1, ρ j 0,–()=

ρ 1– ρ1=

ρ 2– ρ1=

CFL3D User’s Manual 91

6.2 Physical Boundary Conditions with Auxiliary Data

are not allowed.) The detection of singular metrics is no longer keyed to the specification
of eitherbctype 1011, 1012, or 1013. While these boundary conditions are still applicable,
the new singular metric detection allows any other standard boundary condition that does
not rely on the grid metrics at the boundary to be used as well. Note that the following
boundary conditions rely on the grid metrics at the boundary and so should not be used on
a singular face/face segment: 1001 (symmetry), 1005 (inviscid), 1003 (inflow/outflow),
2003 (inflow with specified total conditions) and 2006 (radial equilibrium).

When CFL3D detects singular metrics on a particular block, a message is written to
the main output file (unit 11) indicating the location. It is always a good idea to verify that
any singular block faces/face segments are in fact correctly detected. Metrics are treated as
singular if the total area of a face/face segment is less than a parameteratol (set near the
top of subroutinemetric, in modulelbcx.f). In certain cases,atol may need to be
changed (increased in magnitude if faces that are known to be non-singular are flagged as
singular and decreased if faces that are known to be singular are not flagged as such, in
which case the code will give floating point overflow in subroutinemetric).

6.2Physical Boundary Conditions with Auxiliary Data

For the “2000” series of boundary conditions, auxiliary data is required. Therefore,
ndata �������	��
������� wing sections describe the boundary condition types for constant input
data (ndata > 0). For these conditions, the information in “LT14 - I0 Boundary Condition
Specification” on page32 through “LT19 - KDIM Boundary Condition Specification” on
page35 is immediately followed by a header line, then a single data line with thendata
values appropriate for the particular boundary condition. Section6.2.8 describes how to
use the same boundary condition types with variable input data.

Input values forbctype (i.e. boundary condition types currently supported) as follows:

bctype boundary condition
2002 specified pressure ratio
2003 inflow with specified total conditions
2004 no-slip wall
2005 periodic in space
2006 set pressure to satisfy the radial equilibrium equation
2007 set all primitive variables
2102 pressure ratio specified as a sinusoidal function of time

CHAPTER 6 Boundary Conditions

92 CFL3D User’s Manual

 6.2.1Specified Pressure Ratio

bctype 2002

The specified pressure ratio boundary condition, generally used as the outflow bound-
ary condition for internal flows, is a cell-center type boundary condition. A single pressure
ratio, , is specified on input. The parameterndata must be set to 1 for the input

pressure ratio value to be read. This pressure ratio is used to set both cell-center pressure
boundary values (and). Extrapolation from inside the computational domain is

used to set the boundary values for , and . See “Extrapolation” on page84. An
example of the input lines is:

p/pinf
0.910

When usingbctype 2002 as the outflow condition for internal (wind tunnel type)
flows, the tunnel Mach number and/or mass flow should be monitored andp/pinf adjusted
accordingly to obtain the correct conditions. This is usually an iterative process.

 6.2.2Inflow With Specified Total Conditions

bctype 2003

The inflow with specified total conditions boundary condition (sometimes referred to
as an “engine inflow” boundary condition because it is often used to specify the conditions
at an inflow face where an engine exhaust is located) is a cell-center type boundary condi-
tion. The following five pieces of information are provided on input (ndata = 5): an esti-
mated inflow Mach number (), the total pressure ratio (), the total temperature

ratio (), and the flow directions (and) in degrees. These values are used as the
external state in a 1-d characteristic boundary condition. An example of the input lines is:

Mach Pt/Pinf Tt/Tinf Alphae Betae
0.300 4.000 1.17555 0.0 0.0

Boundary condition type 2003 is very similar to boundary condition type 1003 in that
either interior or exterior values are chosen, depending on the sign of the characteristics at
the boundary. One difference between them is that, while 1003 uses far-field reference-
state levels for the exterior values, 2003 uses the total temperature, pressure, Mach num-
ber, and flow angle that are input to determine the reference exterior values. Another dif-
ference is the way the density and pressure boundary condition values are determined.
Boundary condition type 1003 calculates these values as shown in Equation (6-10).
Boundary condition type 2003 first determines a Mach number at the boundary using the
velocities and speed of sound at the boundary (which were calculated through the charac-
teristic method):

p̃ p̃∞⁄

p 1– p 2–

ρ u v, , w

Me p̃t p̃∞⁄

T̃t T̃∞⁄ α β

CFL3D User’s Manual 93

6.2.3 Viscous Surface

(6-23)

It should be noted that the inflow Mach number may end up slightly different from the
input for a converged solution. The pressure and density boundary conditions are then

determined with

(6-24)

The boundary condition velocity components are determined the same way as for bound-
ary condition type 1003.

 6.2.3Viscous Surface

bctype 2004

The viscous surface boundary conditions are cell-face type boundary conditions. The
no-slip condition () is applied at the surface. Two pieces of auxiliary information

are supplied on input (ndata = 2): the wall temperature () and the mass flow (),

where . (is zero if there is no flow through the wall.) An

example of the input lines is:

Twtype Cq
0.95 -0.05

where

Twtype > 0 sets = Twtype
Twtype = 0 sets adiabatic wall
Twtype < 0 sets at the stagnation temperature
Cq < 0 results in suction (mass flow OUT of the zone)

Cq > 0 results in blowing (mass flow INTO the zone)

Cq = 0 results in no flow through the wall (same as oldbctype 1004)

M
2 u

2
v

2
w

2
+ +

a
2

-----------------------------=

Me

p
p̃t p̃∞⁄

γ 1
γ 1–

2
-----------M

2
+

 γ γ 1–()⁄--=

ρ γp

a
2

-----=

V 0=

T̃w T̃∞⁄ Cq

Cq ρunormal() ρu()∞⁄= Cq

T̃w T̃∞⁄

T̃w

CHAPTER 6 Boundary Conditions

94 CFL3D User’s Manual

Note that for a dynamic grid,bctype 2004 gives no-slip relative to the moving wall. To
set the wall velocity to zero relative to a non-moving reference frame when the mesh is
moving, use –2004 instead of 2004; this option makes sense only if the grid motion is tan-
gential to the surface.

Also note that boundary condition type 2004 supersedes boundary condition types
1004and 2004 in previous versions of CFL3D. The main reason for the replacement is
that 1004 relied on global parametersisnd andc2spe to determine whether adiabatic wall
or constant-temperature wall conditions were invoked. As a consequence, all 1004 seg-
ments had to be the same. Now, with 2004 (along with its additional data fieldTwtype),
every no-slip wall segment can be set with different wall temperature conditions, if
desired. Boundary condition type 2004 also allows for mass flow through the wall (suction
or blowing) through the second additional data fieldCq.

The no-slip wall boundary condition is implemented as follows:

• The nondimensional pressure on the body is determined through linear extrapola-

tion:

(6-25)

But if , then . Here the indices 1 and 2 indicate the first and second cell-

center values away from the wall, respectively.

• The nondimensional square of the speed of sound, variablec2, at the wall is next deter-

mined. (Note thatc2 = .)

If Twtype > 0,c2 = Twtype.

If Twtype < 0,c2 = .

If Twtype = 0,c2 = .

• The surface velocities are then determined as

(6-26)

pb

pb p1 p2 p1–() 2⁄–=

pb 0< pb p1=

ãw ã∞⁄()2
T̃w T̃∞⁄=

1
γ 1–

2
----------- M∞()2

+

a1

a∞

 2
1

γ 1–
2

----------- M1()2
+

uw M∞Cq

ξx

∇ξ
---------- c2()

γ pb
----------- umesh+=

vw M∞Cq

ξy

∇ξ
---------- c2()

γ pb
----------- vmesh+=

ww M∞Cq

ξz

∇ξ
---------- c2()

γ pb
----------- wmesh+=

CFL3D User’s Manual 95

6.2.4 Periodic (In Space)

where , , and are the velocity components of the mesh (they equal 0

if the grid/body is not in motion).

• Since 2004 is a cell-face boundary condition type (i.e. the boundary conditions and
their gradient are applied at the cell face rather than in ghost cells),

(6-27)

The gradients at the wall for all the primitive variables are determined via
, etc.

Note thatsmin is computed from viscous wallsonly. If a wall is inviscid, then as far as
smin is concerned, it is invisible. This is important to remember when viscous boundary
conditions are turned on after running a case inviscidly for some time sincesmin may
never have been computed!

 6.2.4Periodic (In Space)

bctype 2005

The periodic boundary conditions are cell-center type boundary conditions. Four
pieces of additional information must be input (ndata = 4). The number of the grid with
which the current grid is periodic and the rotation angle (, ,) about one of the

coordinate axes () are needed. Onlyoneof the three angles can be used at a time and
the other two anglesmust be identically zero. The angles should be determined from the
right-hand rule. For example, if rotation is desired about the N axis (where N is either

or , point the right-hand thumb in the direction of the +N axis. The fingers will curl in the

direction of the positive angle. When setting the angle for a particular face (i.e. the = 1
face), set the angle of rotation equal to the angle that theperiodicface would have to move
through to get to this face.

For a sample input, assume the current face on which the boundary condition is being
set is . The the following input will cause the current face to be periodic with the

jdim face in grid 2, where a rotation of +45 degrees about the axis would map thejdim
face of grid 2 onto the face of the current grid:

ngridp dthx dthy dthz
2 45.0 0.0 0.0

At present, it is assumed that the current block and the block with which it is periodic
match 1-1 at their corresponding faces after the rotation. Note that there isnot a check for
this! Also, the two blocks are assumed to be aligned similarly. That is , and on the
first block must be definedexactly the same on the second block. For example, if the

umesh vmesh wmesh

ρw

γ pb

c2
---------=

pw pb=

ρ∇ 2ρ1 2ρw–=

dθx dθy dθz

x y z, ,

x y,
z

i

j 1=

x

j 1=

i j, k

CHAPTER 6 Boundary Conditions

96 CFL3D User’s Manual

= kdim face of the current block has the periodic boundary condition applied to it, it is

implicitly assumed that it is periodic with the face of the specified second block

and and run in the exact same directions on both blocks. Note that this means that two
of the dimensions (idim andjdim in the example) must be the same on both blocks.

The periodic boundary condition also works for a grid with one cell (two grid planes)
in the periodic direction if the grid is set to be periodic with itself. Note, however, that if a
particular block is periodic with adifferent block, then neither block should be only one
cell wide in the periodic direction.

In addition, the periodic boundary condition may be used for linear displacement, pro-
vided the rotation angles are set to zero. Alternatively, the 1-1 block connection can be
used (linear displacement only!). The 1-1 internal check will flag geometric mismatches,
which should be equal to the desired linear periodic displacement. This is a good check of
the input which is not available with boundary condition type 2005.

Boundary condition type 2005 is a limited-use periodic (in space) boundary condition.
For example, if one is solving for flow through a duct and it is known that the solution is
periodic over 90 degrees (i.e. the solution is identical in each of the four quadrants of the
duct), then a solution need only be obtained on a grid spanning 90 degrees, with periodic
boundary conditions applied at the two edges.

For an illustration of how this boundary condition works, consider Figure6-9. This
example is for flow through a 90 degree wedge (the flow direction is in the third dimen-
sion, out of the page). The flow is periodic over 90 degrees, so periodic boundary condi-
tions are applied at the and faces.

Figure 6-9. Periodic boundary condition (bctype 2005) example.

k

k 1=

i j

j 0= j jdim=

jdim–2

 1
 2

 qj0(1)
qj0(2)

qj0(3)

qj0(4)

jdim–1

 z

 y

CFL3D User’s Manual 97

6.2.5 Radial Pressure Equilibrium

For density and pressure, boundary condition type 2005 sets:

(6-28)

The boundary conditions for the velocity components , , and are assigned simi-

larly, except that they are first rotated through the periodic angle, in this case. For
example,

(6-29)

For an example of how this boundary condition can be used for linear displacement,
see the 2-d vibrating plate sample test case in Section9.1.6 on page177.

 6.2.5Radial Pressure Equilibrium

bctype 2006

Boundary condition type 2006 is a cell-center type boundary condition. Radial pres-
sure equilibrium is used as a downstream boundary condition when it is desired to specify
a pressure, but a large swirling component is present in the flow. Typically, this boundary
condition would be used in turbomachinery applications in which a swirling flow is estab-
lished by a rotor that is not corrected by the presence of stators or exit guide vanes.

Four additional pieces of information are needed for this boundary condition type
(ndata = 4). The grid number (ngridc) of the gridfrom which the integration of pressure
is to be continued is specified. If the integration in this grid is not continued from another
grid, input 0. A value for is input. Ifngridc = 0, this value will be the starting value

for the integration. Ifngridc 0, then the pressure value from the connecting point in grid
ngridc is used as the starting value for the integration in the current block. The direction in
which integration is to proceed is specified with the parameterintdir. It may have an abso-
lute value of 1, 2, or 3 for integration in the , or directions, respectively. The sign of
intdir indicates whether the integration proceeds in the increasing (positive) or decreasing
(negative) coordinate direction. Theintdir direction must be the radial direction. The
fourth piece of information needed is the physical direction along which the radial axis
lies, denoted with the parameteraxcoord. It may have the values of +1, +2, or +3 for a
radial axis aligned with the , or axes. The input lines for this boundary condition
type would look like:

ngridc P/Pinf intdir axcoord

qj0(1) q(jdim-1)=

qj0(2) q(jdim-2)=

qj0(3) q(1)=

qj0(4) q(2)=

u v w

90°

u1 BC, qj0 k i 2 1, , ,() q j k i 2, , ,() (unchanged)= =

v1 BC, qj0 k i 3 1, , ,() q j k i 3, , ,() θp q j k i 4, , ,() θpsin–cos= =

w1 BC, qj0 k i 4 1, , ,() q j k i 3, , ,() θp q j k i 4, , ,() θpcos+sin= =

p̃ p̃∞⁄

i j, k

x y, z

CHAPTER 6 Boundary Conditions

98 CFL3D User’s Manual

0 0.9 +3 1

The radial equilibrium condition requires that the pressure satisfy

(6-30)

where is the circumferential velocity component and is the radius. The pressure

ratio, , is set at either the bottom or the top of the block face and then the radial

equilibrium equation is integrated in either the increasing or decreasing radial direction to
give the pressure at all other radii. The trapezoidal rule is used to perform the integration.
The other flow-field variables () are extrapolated from inside the computational
domain. See “Extrapolation” on page84.

This boundary condition assumes that one coordinate direction on the block face is
essentially radial and the other is essentially circumferential and that the integration is
being carried out in the radial direction. Since there is no way to verify this in the code,
caremust be exercised when using this boundary condition to insure that this and the fol-
lowing restrictions are met. Continuation of the radial equilibrium condition through block
boundaries is restricted to blocks that have thesame orientation. For example, if the equi-
librium condition is to be continued through a boundary from an adjacent block, then

and must run in the same direction in both blocks. This also implies that the boundary

must be = 1 in one block and = kdim in the second (i.e. the boundary can not be

= 1 in both blocks). Also, the segment must run the entire length of the block face in the
direction in which the integration is being carried out. For example, if the integration is
being carried out in the direction, thenksta must be set to 1 andkend must be set to
kdim. This restriction applies only if the integration is being continued from another
block.

Consider a case in which boundary condition 2006 is to be applied at an = idim face,

with = constant radial lines (i.e. lines of constant angle) and = constant circumfer-

ential lines (i.e. lines of constant radius). Assume the block face lies in an = constant
plane, as shown in Figure6-10.

Assuming integration in the + direction (intdir = 3), the pressure (l = 5) in the first
plane of ghost cells is obtained from

(6-31)

dp
dr
------ ρ

Vθ()2

r
--------------=

Vθ r

p̃ p̃∞⁄

ρ u v w, , ,

k i

j k

k k

k

k

i

j θ k

x

k

qi0(j,1,5,3)
p̃

p̃∞

 p∞=

qi0(j,k,5,3) pk j, pk 1 j,–

ρk j, Vθ()2[]k j,
r k j,

-----------------------------------∆r k j,+= = k 2 kdim 1–,=

CFL3D User’s Manual 99

6.2.5 Radial Pressure Equilibrium

where

(6-32)

 is the velocity at the cell center () and is the average radius in cell

:

(6-33)

 denotes a cell-center value. (,) denotes a face-center value.

The velocity and density in the first layer of ghost cells is determined by zeroth order
extrapolation from the adjacent interior points. For the case shown in Figure6-10, the den-
sity (l = 1) is obtained from

qi0(j,k,1,3) = q(j,k,idim-1,1) (6-34)

Figure 6-10. Radial pressure equilibrium boundary condition (bctype 2006) example.

Vθ()2[]k j, Vk j, ∇η j⋅=

∇η j
1
2
--- ∇ηk j 1 2⁄+, ∇ηk j 1 2⁄–,+[]idim 1–=

Vk j, j k idim 1–, , r k j,

k j,()

r k 1 2⁄ j,– r k 1 2⁄ j,++[] 2⁄

k j,() k 1 2⁄± j 1 2⁄±

q(j,k,idim-1,l=1-5)

qi0(j,k,l=1-5,3)

qi0(j,k,l=1-5,4)

z

 x
k, ζ, r

 j, η, θz

 y

CHAPTER 6 Boundary Conditions

100 CFL3D User’s Manual

All flow quantities in the second layer of ghost cells are obtained by zeroth order
extrapolation from the first layer of ghost cells:

qi0(j,k,l=1-5,4) = qi0(j,k,l=1-5,3) (6-35)

 6.2.6Specify All Primitive Variables

bctype 2007

Boundary condition type 2007 is a cell-center type boundary condition. It involves set-
ting the boundary conditions with the five (ndata = 5) primitive variables, using standard

CFL3D normalizations: , , , , and . An example of

the input lines is:

rho/rho_inf u/a_inf v/a_inf w/a_inf p/(rho_inf*a_inf**2)
1.0 0.3 0.0 0.0 0.71

Note that the input pressure isnot but rather . Also note that the turbu-

lence quantities arenot currently allowed to be specified in the same way as theq’s.
Instead, they are extrapolated from the interior whenbctype 2007 is employed.

 6.2.7Specified Pressure Ratio As Sinusoidal Time Function

bctype 2102

The specified pressure ratio as a sinusoidal function of time boundary conditions are
cell-center type boundary conditions. The pressure ratio, , is specified as a sinusoi-

dal function of time. The other flow-field variables () are extrapolated from
inside the computational domain. Three pieces of additional information are specified on
input (ndata = 4): the desired baseline (steady) pressure ratio (), the amplitude of

the pressure oscillation (), the reduced frequency of the pressure oscillation (),

and the “grid equivalent” of the dimensional reference length used to define the reduced
frequency (). The pressure will vary as

(6-36)

The reduced frequency is non-dimensionalized by

(6-37)

where is the frequency in cycles per second, is a characteristic length and is the
free-stream speed of sound. (Note that this definition of reduced frequency differs from

ρ̃ ρ̃∞⁄ ũ ã∞⁄ ṽ ã∞⁄ w̃ ã∞⁄ p̃ ρ̃∞ ã∞()2[]⁄

p̃ p̃∞⁄ p̃ γ p̃∞()⁄

p̃ p̃∞⁄

ρ u v w, , ,

p̃ p̃∞⁄

∆ p̃ p̃∞⁄ kr

Lref

γp
p̃

p̃∞

∆ p̃
p̃∞
------- 2πkr t()sin+=

kr
f̃ L̃
ã∞
-------=

f̃ L̃ ã∞

CFL3D User’s Manual 101

6.2.8 Variable Data for the 2000 Series

the “standard” definition .) An example of the lines in the input file for this

boundary condition is:

p/pinf deltap/pinf rfreqp lref
0.910 0.001 175.93 1.0

 6.2.8Variable Data for the 2000 Series

To use this option, setndata = –(the ndata used for the constant data value(s) as
described above). Then, instead of the line containing the constant data value(s), substitute
a line with the name (up to 60 characters) of a formatted file that has the appropriate array
of data values. The data file will then be read with the following format:

read(iunit,*) header/title
read(iunit,*) mdim,ndim,np mdim,ndim = cell-center dimensions of segment

np = number of planes of ghost cell data
read(iunit,*) nvalues number of data values;nvalues = abs(ndata)
read(iunit,*)((((bcdata(m,n,ip,l),m=1,mdim),n=1,ndim),ip=1,np),

l=1,nvalues)

The roles ofm,n vary depending on which face the segment is located:

Note that zeroes arenot acceptable formdim or ndim. Use the actual values of jdim-1,
kdim-1, and/oridim-1 for the full face. Only boundary condition type 2007 can make use
of two planes of data. For all other boundary conditions, setnp = 1.

6.3Block Interface Boundary Conditions

For all the types of block interface boundary conditions, setbctype = 0. If bctype 0,
but block interface boundary conditions are set, the block interface boundary conditions
will supersede. All block interface boundary conditions (one-to-one, patched, and overset)
are cell-center type boundary conditions.

on the = 1 and the = idim faces where
mdim = jend–jsta andndim = kend–ksta
on the = 1 and the = jdim faces where
mdim = kend–ksta andndim = iend–ista
on the = 1 and the = kdim faces where
mdim = jend–jsta andndim = iend–ista

kr f̃ L̃ Ṽ ∞⁄=

m n, j k,→ i i

m n, k i,→ j j

m n, j i,→ k k

CHAPTER 6 Boundary Conditions

102 CFL3D User’s Manual

 6.3.1One-to-One Blocking

(Input Line Types Twenty-Four through Twenty-Six)

One-to-one (1-1) blocking, sometimes called C0 continuous, means that the faces
shared by two grids are exactly (to machine zero) the same. Several examples showing a
variety of blocking strategies are discussed below. In the examples, the variable,l, repre-
sents the five flow-field variables. The sample inputs illustrate how the index ranges (ista
to iend, jsta to jend, ksta to kend) in “LT25 - 1-1 Blocking Connections” on page37 are
assigned so that the correct communication between blocks is established. A good initial
check to determine if the one-to-one blocking input is set up correctly is to compare the
quantity of points in the range. For example, if two grids share a common portion of a =
constant face, the following must be true:

(6-38)

Keep in mind that = constant faces can communicate with = constant and/or = con-
stant faces as well (and vice versa), in which case the check will be

(6-39)

or

(6-40)

respectively. Note that Equation (6-38) through Equation (6-40) are necessary for a one-
to-one interface to be specified correctly, but they are not sufficient; the direction in which
the indices are input must be correct as well. (See Example 3 on page106.)

Example 1

As a simple illustration of 1-1 blocking, consider Figure6-11. The figure shows an
= constant (not necessarily thesame constant) face of two grids. Suppose communica-

Figure 6-11. One-to-one blocking example 1.

j

jend jsta– 1+[]grid 1 jend jsta– 1+[]grid 2=

j i k

jend jsta– 1+[]grid 1 iend ista– 1+[]grid 2=

jend jsta– 1+[]grid 1 kend ksta– 1+[]grid 2=

k k

j j

Grid 1 Grid 2

21 × 5 × 5 21 × 7 × 5

i

CFL3D User’s Manual 103

6.3.1 One-to-One Blocking

tion is desired between the = jdim face of grid 1 and the = 1 face of grid 2. The perti-
nent input would look something like:

Line Type
6 NGRID NPLOT3D NPRINT NWREST ICHK I2D NTSTEP ITA

2 1 0 100 0 0 1 1

8 IDIM JDIM KDIM
21 5 5
21 7 5

13 GRID NBCI0 NBCIDIM NBCJ0 NBCJDIM NBCK0 NBCKDIM IOVRLP
1 1 1 1 1 1 1 0
2 1 1 1 1 1 1 0

16 J0: GRID SEGMENT BCTYPE ISTA IEND KSTA KEND NDATA
1 1 1003 1 21 1 5 0
2 1 0 1 21 1 5 0

17 JDIM: GRID SEGMENT BCTYPE ISTA IEND KSTA KEND NDATA
1 1 0 1 21 1 5 0
2 1 1003 1 21 1 5 0

1-1 BLOCKING DATA:
24 NBLI

1
25 NUMBER GRID : ISTA JSTA KSTA IEND JEND KEND ISVA1 ISVA2

1 1 1 5 1 21 5 5 1 3
26 NUMBER GRID : ISTA JSTA KSTA IEND JEND KEND ISVA1 ISVA2

1 2 1 1 1 21 1 5 1 3

Note that in the sample input, both grids have the same value for idim. This does not have
to be true. One grid can share only a portion of a face with another grid.

The boundary conditions at the = jdim face on any plane, denoted i1, of grid 1 would
be set as:

Grid 1 Grid 2
qj0(1,i1,l,3) = q(1,1,i2,l)
qj0(2,i1,l,3) = q(1,2,i2,l)
qj0(3,i1,l,3) = q(1,3,i2,l)
qj0(4,i1,l,3) = q(1,4,i2,l)
qj0(1,i1,l,4) = q(2,1,i2,l)
qj0(2,i1,l,4) = q(2,2,i2,l)
qj0(3,i1,l,4) = q(2,3,i2,l)
qj0(4,i1,l,4) = q(2,4,i2,l)

j j

j i

CHAPTER 6 Boundary Conditions

104 CFL3D User’s Manual

The boundary conditions at the= 1 face on any plane, denoted i2, of grid 2 would be
set as:

Example 2

A slightly more complicated example of 1-1 blocking is shown in Figure6-12. Again,
the figure shows an = constant face (not necessarily thesame constant) of two grids. In

grid 1, is now a circumferential direction. Communication is desired between the= 1

and the = jdim faces of grid 1 and the = 1 face of grid 2. (In this example, it is

assumed that the boundary of grid 1 is a solid wall flat plate, so there is no 1-1 con-
nectivity there.) The pertinent input would look something like:

Line Type
6 NGRID NPLOT3D NPRINT NWREST ICHK I2D NTSTEP ITA

2 1 0 100 0 0 1 1

8 IDIM JDIM KDIM
21 9 3
41 7 5

13 GRID NBCI0 NBCIDIM NBCJ0 NBCJDIM NBCK0 NBCKDIM IOVRLP
1 1 1 1 1 1 1 0
2 1 1 2 1 1 1 0

16 J0: GRID SEGMENT BCTYPE ISTA IEND KSTA KEND NDATA
1 1 0 1 21 1 3 0
2 1 0 1 21 1 5 0
2 2 1001 21 41 1 5 0

17 JDIM: GRID SEGMENT BCTYPE ISTA IEND KSTA KEND NDATA

Grid 2 Grid 1
qj0(1,i2,l,1) = q(4,1,i1,l)
qj0(2,i2,l,1) = q(4,2,i1,l)
qj0(3,i2,l,1) = q(4,3,i1,l)
qj0(4,i2,l,1) = q(4,4,i1,l)
qj0(1,i2,l,2) = q(3,1,i1,l)
qj0(2,i2,l,2) = q(3,2,i1,l)
qj0(3,i2,l,2)= q(3,3,i1,l)
qj0(4,i2,l,2) = q(3,4,i1,l)

Figure 6-12. One-to-one blocking example 2.

j i

 k

 j j

Grid 1 Grid 2 k
21 × 9 × 3 41 × 7 × 5

i

j j

j j

k 1=

CFL3D User’s Manual 105

6.3.1 One-to-One Blocking

1 1 0 1 21 1 3 0
2 1 1003 1 41 1 5 0

1-1 BLOCKING DATA:
24 NBLI

2
25 NUMBER GRID : ISTA JSTA KSTA IEND JEND KEND ISVA1 ISVA2

1 1 1 1 1 21 1 3 1 3
2 1 1 9 1 21 9 3 1 3

26 NUMBER GRID : ISTA JSTA KSTA IEND JEND KEND ISVA1 ISVA2
1 2 1 1 3 21 1 1 1 3
2 2 1 1 3 21 1 5 1 3

Note how ranges on grid 2 to coincide with the appropriate points on the = 1 and

= jdim faces of grid 1. This sample input also shows how grid 1 can share only a portion

of the = 1 face of grid 2 in the direction.

The boundary conditions at the = 1 face on any plane, denoted i1, of grid 1 would be
set as:

The boundary conditions at the = jdim face for the i1 plane of grid 1 would be set as:

The boundary conditions at the = 1 face on any plane, denoted i2, of grid 2 would be
set as:

Grid 1 Grid 2
qj0(1,i1,l,1) = q(1,2,i2,l)
qj0(2,i1,l,1) = q(1,1,i2,l)
qj0(1,i1,l,2) = q(2,2,i2,l)
qj0(2,i1,l,2) = q(2,1,i2,l)

Grid 1 Grid 2
qj0(1,i1,l,3) = q(1,3,i2,l)
qj0(2,i1,l,3) = q(1,4,i2,l)
qj0(1,i1,l,4) = q(2,3,i2,l)
qj0(2,i1,l,4) = q(2,4,i2,l)

Grid 2 Grid 1
qj0(1,i2,l,1) = q(1,2,i1,l)
qj0(2,i2,l,1) = q(1,1,i1,l)
qj0(3,i2,l,1) = q(8,1,i1,l)
qj0(4,i2,l,1) = q(8,2,i1,l)
qj0(1,i2,l,2) = q(2,2,i1,l)
qj0(2,i2,l,2) = q(2,1,i1,l)
qj0(3,i2,l,2) = q(7,1,i1,l)
qj0(4,i2,l,2) = q(7,2,i1,l)

k k j

j

j i

j i

j

j i

CHAPTER 6 Boundary Conditions

106 CFL3D User’s Manual

Example 3

The previous two examples show 1-1 blocking over the entire range of two grids. In
some cases, only segments of faces will utilize 1-1 communication between grids. In
Figure6-13, two grids share a portion of a face beyond boundaries defined as inviscid sur-
faces. Again, the figure shows an = constant face (not necessarily thesame constant) of

two grids. Communication is desired betweenjsta = 5 andjend = 9 on the = 1 face of

grid 1 andjsta = 1 andjend = 5 on the = 1 face of grid 2. The pertinent input would
look something like:

Line Type
6 NGRID NPLOT3D NPRINT NWREST ICHK I2D NTSTEP ITA

2 1 0 100 0 0 1 1

8 IDIM JDIM KDIM
21 9 7
21 13 5

13 GRID NBCI0 NBCIDIM NBCJ0 NBCJDIM NBCK0 NBCKDIM IOVRLP
1 1 1 1 1 2 1 0
2 1 1 1 1 2 1 0

18 K0: GRID SEGMENT BCTYPE ISTA IEND JSTA JEND NDATA
1 1 1005 1 21 1 5 0
1 2 0 1 21 5 9 0
2 1 0 1 21 1 5 0
2 2 1005 1 21 5 13 0

1-1 BLOCKING DATA:

Figure 6-13. One-to-one blocking example 3.

j

 j

k

 k

Grid 1

Grid 2

21 × 9 × 7

21 × 13× 5

k

i

k

k

CFL3D User’s Manual 107

6.3.1 One-to-One Blocking

24 NBLI
1

25 NUMBER GRID : ISTA JSTA KSTA IEND JEND KEND ISVA1 ISVA2
1 1 1 5 1 21 9 1 1 2

26 NUMBER GRID : ISTA JSTA KSTA IEND JEND KEND ISVA1 ISVA2
1 2 1 5 1 21 1 1 1 2

Note that, since the index runs in opposite directions on the two grids, one range is
increasing and one range is decreasing in the 1-1 blocking input. It does not matter which
grid’s range increases and which one decreases as long as they map the points in the cor-
rect order.

The boundary conditions at the= 1 face fromjsta to jend-1 on any plane, denoted i1,
of grid 1 would be set as:

The boundary conditions at the= 1 face fromjsta to jend-1 on any plane, denoted i2,
of grid 2 would be set as:

Grid 1 Grid 2
qk0(5,i1,l,1) = q(4,1,i2,l)
qk0(6,i1,l,1) = q(3,1,i2,l)
qk0(7,i1,l,1) = q(2,1,i2,l)
qk0(8,i1,l,1) = q(1,1,i2,l)
qk0(5,i1,l,2) = q(4,2,i2,l)
qk0(6,i1,l,2) = q(3,2,i2,l)
qk0(7,i1,l,2) = q(2,2,i2,l)
qk0(8,i1,l,2) = q(1,2,i2,l)

Grid 2 Grid 1
qk0(1,i2,l,1) = q(8,1,i1,l)
qk0(2,i2,l,1) = q(7,1,i1,l)
qk0(3,i2,l,1) = q(6,1,i1,l)
qk0(4,i2,l,1)= q(5,1,i1,l)
qk0(1,i2,l,2) = q(8,2,i1,l)
qk0(2,i2,l,2)= q(7,2,i1,l)
qk0(3,i2,l,2) = q(6,2,i1,l)
qk0(3,i2,l,2) = q(5,2,i1,l)

j

k i

k i

CHAPTER 6 Boundary Conditions

108 CFL3D User’s Manual

Example 4

The last example of 1-1 blocking involves three grids shown in Figure6-14. In the fig-
ure, a = constant (denoted k1) plane of grid 1, an= constant (denoted i2) plane of grid

2, and a = constant (denoted j3) plane of grid 3 are shown. Communication between

grids 1 and 2 is desired between the= idim face of grid 1 and the = 1 face of grid 2.

Communication between grids 2 and 3 is desired between the = 1 face of grid 2 and the

 = 1 face of grid 3. The pertinent input would look something like:

Line Type
6 NGRID NPLOT3D NPRINT NWREST ICHK I2D NTSTEP ITA

3 1 0 100 0 0 1 1

8 IDIM JDIM KDIM
5 5 21

21 5 7
5 21 9

13 GRID NBCI0 NBCIDIM NBCJ0 NBCJDIM NBCK0 NBCKDIM IOVRLP
1 1 1 1 1 1 1 0
2 1 1 2 1 1 1 0
3 2 1 1 1 1 1 0

14 I0: GRID SEGMENT BCTYPE JSTA JEND KSTA KEND NDATA
1 1 1003 1 5 1 21 0
2 1 1003 1 5 1 7 0
3 1 1005 1 21 1 5 0

Figure 6-14. One-to-one blocking example 4.

i

 j

 k

j

i

k

Grid 1

Grid 2

Grid 3

21 × 5 × 7

5 × 21× 9

5 × 5 × 21

k i

j

i j

k

i

CFL3D User’s Manual 109

6.3.1 One-to-One Blocking

3 2 0 1 21 5 9 0
15IDIM: GRIDSEGMENTBCTYPE JSTA JEND KSTA KEND NDATA

1 1 0 1 5 1 21 0
2 1 1001 1 5 1 7 0
3 1 1000 1 21 1 9 0

16 J0: GRID SEGMENT BCTYPE ISTA IEND KSTA KEND NDATA
1 1 1000 1 5 1 21 0
2 1 0 1 21 1 5 0
2 2 1000 1 21 5 7 0
3 1 1003 1 5 1 9 0

18 K0: GRID SEGMENT BCTYPE ISTA IEND JSTA JEND NDATA
1 1 1003 1 5 1 5 0
2 1 0 1 21 1 5 0
3 1 1003 1 5 1 21 0

1-1 BLOCKING DATA:
24 NBLI

2
25 NUMBER GRID : ISTA JSTA KSTA IEND JEND KEND ISVA1 ISVA2

1 1 5 1 1 5 5 21 2 3
2 2 1 1 1 21 5 1 1 2

26 NUMBER GRID : ISTA JSTA KSTA IEND JEND KEND ISVA1 ISVA2
1 2 21 1 5 1 1 1 3 1
2 3 1 1 9 1 21 5 2 3

Notice that the index range for grid 2 runs in the opposite direction of the index
range for grid 3 due to the right-hand rule.

The boundary conditions at the = idim face of grid 1 would be set as:

The boundary conditions from ksta to kend-1 on the = 1 face of grid 2 would be set as:

Grid 1 Grid 2
qi0(1,k1,l,3) = q(1,4,i2,l)
qi0(2,k1,l,3) = q(1,3,i2,l)
qi0(3,k1,l,3) = q(1,2,i2,l)
qi0(4,k1,l,3) = q(1,1,i2,l)
qi0(1,k1,l,4) = q(2,4,i2,l)
qi0(2,k1,l,4) = q(2,3,i2,l)
qi0(3,k1,l,4) = q(2,2,i2,l)
qi0(4,k1,l,4) = q(2,1,i2,l)

Grid 2 Grid 1
qj0(1,i2,l,1) = q(4,k1,4,l)
qj0(2,i2,l,1) = q(3,k1,4,l)
qj0(3,i2,l,1) = q(2,k1,4,l)
qj0(4,i2,l,1) = q(1,k1,4,l)
qj0(1,i2,l,2) = q(4,k1,3,l)
qj0(2,i2,l,2) = q(3,k1,3,l)
qj0(3,i2,l,2) = q(2,k1,3,l)
qj0(4,i2,l,2) = q(1,k1,3,l)

i k

i

j

CHAPTER 6 Boundary Conditions

110 CFL3D User’s Manual

The boundary conditions at the = 1 face of grid 2 would be set as:

The boundary conditions from ksta to kend-1 on the = 1 face of grid 3 would be set as:

Grid 2 Grid 3
qk0(1,i2,l,1) = q(j3,8,1,l)
qk0(2,i2,l,1) = q(j3,7,1,l)
qk0(3,i2,l,1) = q(j3,6,1,l)
qk0(4,i2,l,1) = q(j3,5,1,l)
qk0(1,i2,l,2) = q(j3,8,2,l)
qk0(2,i2,l,2) = q(j3,7,2,l)
qk0(3,i2,l,2) = q(j3,6,2,l)
qk0(4,i2,l,2) = q(j3,5,2,l)

Grid 3 Grid 2
qi0(j3,5,l,1) = q(4,1,i2,l)
qi0(j3,6,l,1) = q(3,1,i2,l)
qi0(j3,7,l,1) = q(2,1,i2,l)
qi0(j3,8,l,1) = q(1,1,i2,l)
qi0(j3,5,l,2) = q(4,2,i2,l)
qi0(j3,6,l,2) = q(3,2,i2,l)
qi0(j3,7,l,2) = q(2,2,i2,l)
qi0(j3,8,l,2) = q(1,2,i2,l)

k

i

CFL3D User’s Manual 111

6.3.2 Patched-Grid Interpolation

 6.3.2Patched-Grid Interpolation

(Input Line Type Twenty-Seven)

6.3.2.1General Information

This section describes the “basics” of patching in CFL3D and then shows a simple
static patching example to illustrate the basic concepts. Next, an example of dynamic
patching is given. Patched-grid interpolation is designed for communication between grids
that share a common face, but arenot C0 continuous. For example, a global (3-d) grid is
represented by the “box” in Figure6-15. The grid must be right-handed as shown with the
, , and axes drawn in the figure. Patching may occur on an = constant, = constant,

or = constant surface. In the figure, an = constant surface is indicated as the patched
surface. Note that the adjacent grid involved in the patch is not shown in the figure. Patch-
ing works best when the spacing of the adjacent grid in the normal direction to the patch is
the same as that in the other grid. While the patch surface is shown as a plane, it may be
non-planar as well. The local (2-d) indexing on the patch surface is indicated by the and

 axes.

The global and local indices correspond as follows (this is important when determin-
ing the input parameters for dynamic patching in Section3.42 on page49):

If the patch surface is on an = constant surface (as shown in Figure6-15), then

(6-41)

If the patch surface is on a = constant surface, then

Figure 6-15. Patched-grid surface.

j

i

k η
ξ

Patch Surface

i j k i j

k i

ξ
η

i

k η⇔
j ξ⇔

j

CHAPTER 6 Boundary Conditions

112 CFL3D User’s Manual

(6-42)

If the patch surface is on a = constant surface, then

(6-43)

One grid may have multiple grids patched to it. For example, the flow over a nose cone
illustrated in Figure6-16 shows block 1 patched to both block 2 and block 3. Note that the
orientation of grid lines in block 3 is different from that in blocks 1 and 2 to illustrate the
features of the patching algorithm.

Figure 6-16. Patched-grid example.

i η⇔
k ξ⇔

k

i η⇔
j ξ⇔

k

 i

k

i

j
 Block 3

Block 2

Block 1

 A

 A
B

B

 j
k

 j
k

k j

 Block 1

 Block 2

 Block 3

i

A - A

B - B

 singular axis,i = 1

CFL3D User’s Manual 113

6.3.2 Patched-Grid Interpolation

To provide two-way communication between all blocks, a total of seven interpolations
are required for this case, as follows:

The interpolations may be input in any order (but must be consistent once the order is cho-
sen).

6.3.2.2Description/Discussion of Input Parameters

Basically, the patch algorithm works as follows. The interpolations are cycled through,
one at a time, so that at any given time there is one surface being interpolated to. Note,
however, that there may be more than one surface being interpolated from. In order to
interpolate from one (or more) block(s) to another, interpolation coefficients are required.
These are found by expressing the cell-center coordinates on the “to” side of the

patch surface in terms of a nonlinear polynomial in , where are the local coordi-
nates on the “from” side of the patch surface. Newton iteration is used to invert the poly-
nomial to find the local coordinates of the cell center, .

Because of the nonlinearity of the equation, problems may arise in the iteration pro-
cess. The parametersifit , limit , anditmax may be adjusted to try to overcome any conver-
gence difficulties. There must beninter2 values for each of these three parameters.Limit
is the maximum step size in or allowed during the search procedure. The value 1
seems to be a good general choice.Itmax is the maximum number of search steps allowed
per grid point. A rule of thumb is maximum dimension of, , or
on a patch surface.

Ifit controls the order of the polynomial fit used to relate, , or to and . Ifit =

1 for linear in both and (bilinear).Ifit = 2 for quadratic in both and (degenerate

biquadratic).Ifit = 3 for quadratic in , linear in . Ifit = 4 for linear in , quadratic in .

Some tips for choosingifit are:

• A grid with highly curved grid lines in one of thelocal directions will need a quadratic
polynomial in that direction.

• Refer to Section6.3.2.1 and the user’s own knowledge of the grid to decide which (if
any) of the local directions or are highly curved.

• Use the lowest order fit which seems reasonable in each direction.

Interpolation: Description:
1 To i = idim of block 1fromi = 1 of blocks 2 and 3 (two “from” blocks)
2 To i = 1 of block 2fromi = idim of block 1
3 To i = 1 of block 3fromi = idim of block 1
4 To j = 1 of block 2fromk = 1 of block 3
5 To j = jdim of block 2fromk = kdim of block 3
6 To k = 1 of block 3fromj = 1 of block 2
7 To k = kdim of block 3fromj = jdim of block 2

xc yc zc, ,

ξ η, ξ η,

ξc ηc,

ξ η

limit itmax the≈× i j k

x y z ξ η
ξ η ξ η

ξ η ξ η

ξ η

CHAPTER 6 Boundary Conditions

114 CFL3D User’s Manual

• One-to-one patching can always be done with a bilinear fit, regardless of curvature.

To andfrom are numbers containing attributes of the “to” side of the patch surface and
the “from” side of the patch surface. For each of theninter2 interpolations there is only
one value ofto, but there may be more than one value offrom which is set by the parame-
ter nfb. (Nfb is the number of blocks on the “from” side of the patch surface.) The values
of to andfrom are of the form:

to/from = Nmn

where “N” indicates the block number; “m” indicates the coordinate which is constant on
the patch surface (may differ on either side of the patch):

and “n” indicates on which of the two possible m = constant surfaces the patch surface
occurs:

The following inputs pertain to the nose cone case in Figure6-16:

Interpolation # to nfb from
1 112 2 211, 311
2 211 1 112
3 311 1 112
4 221 1 331

m 1 i⇒ constant= =

m 2 j⇒ constant= =

m 3 k⇒ constant= =

n 1 for patch onm 1 surface= =

n 2 for patch onm mdim surface= =

CFL3D User’s Manual 115

6.3.2 Patched-Grid Interpolation

Example

Suppose the dimension of grid 1 in the first example of 1-1 blocking (see Figure6-
11 on page102) was actuallykdim = 9. Grid 1 might look something like that drawn in
Figure6-17. As in Figure6-11, Figure6-17 shows an = constant face (not necessarily
the same constant) of two grids. Notice that the spacing in the direction normal to the
interface (i.e.) is approximately constant across the interface.

In Version 5.0 of CFL3D, patched-grid interpolation data forstatic patched interfaces
(interfaces that do not change with time) must be obtained as a preprocessing step. The
code ronnie is designed for this task.Dynamic patched interfaces, such as occur when
grids slide past one another, are computed internally in CFL3D.

Note that, if two grids with very different sizes are patched together, it may be neces-
sary to use a limiter on the gradients there. To do this, replace (hard-wire) the calls toint2

with calls toint3 instead.

Figure 6-17. Patched-grid example.

 k k

j j

Grid 1 Grid 2

21 × 5 × 9 21 × 7 × 5

k

i

j

CHAPTER 6 Boundary Conditions

116 CFL3D User’s Manual

 6.3.3Chimera Grid Interpolation

(Input Line Type Ten)

Grid overlapping, also known as the overset-grid method or chimera technique,
requires neither 1-1 connectivity nor a shared interface to pass flow information from one
grid to another. With this method, a variety of grid topologies can be used together. The
chimera implementation used in CFL3D is based on the method of Benek et al.12 As a
simplified example of grid overlapping, consider a cross section of a polar grid and a Car-
tesian mesh as shown Figure6-18. Suppose the grids overlap as in Figure6-19. Since both
grids cover the same area, computations on both grids in this area would be redundant.
Therefore, certain points on the Cartesian grid will be eliminated from the computation.
The polar grid is used to carve a “hole” in the Cartesian grid. In this example, the hole is
defined as any cell-center point of the Cartesian grid interior to the= 4 grid line of the
polar mesh. The Cartesian mesh with the hole carved out is illustrated in Figure6-20. Any
cell center point of the Cartesian grid located within this hole is designated a “hole point”.
The first two “nonhole” cell-center points of the Cartesian grid that border a hole point
both vertically and horizontally are labelled “fringe points”. The remaining grid points
that have not been designated as either hole or fringe points are called “field” points.
Figure6-21 depicts the hole, fringe, and boundary points for this example. Each fringe
point of the Cartesian grid falls within a “target cell” of the polar grid.

A searching algorithm is used to identify the particular eight points that define the
hexahedral target cell. The search begins with an initial guess for the target cell. Next, the
current target cell is isoparametrically mapped into a unit cube in computational space.
The same transformation into the mapped coordinate system is then applied to the fringe
point; if the mapped fringe point lies in the same unit cube as the current target cell, then
that target cell in fact encases the fringe point. If the mapped fringe point lies outside the
unit cube, then the current target cell is not the correct choice. However, the magnitude
and direction of the mapped fringe point relative to the current target cell may be used to
choose a new guess for the target cell. The mapping process is repeated until the correct
target cell is identified. With the correct target cell identified, the data are transferred from
the target cell to the fringe point with trilinear interpolation in computational space. Outer
boundary values of the polar grid are determined in a similar manner. The MultiGeometry
Grid Embedder (MaGGiE) code, written specifically for CFL3D by Baysal et al.11, is used
to determine the interpolation information between grids.

Note that if an overlapped (Chimera) grid is used and there is grid overlapon solid sur-
faces, then forces are double-counted at the overlap. If possible, make appropriate use of
segment < 0 (see note (2) of Section3.7) to remedy this.

k

CFL3D User’s Manual 117

6.3.3 Chimera Grid Interpolation

Figure 6-18. Grid-overlapping grid examples.

Figure 6-19. Overlapped grids.

j

k

k

j

Grid 1
Grid 2

9 × 13 × 5
21 × 15 × 15

CHAPTER 6 Boundary Conditions

118 CFL3D User’s Manual

Figure 6-20. Hole in Cartesian grid in region of polar grid.

Figure 6-21. Hole, fringe, and boundary points for overlapped grid example.

Hole Point for Cartesian Grid

Fringe Point for Cartesian Grid

Boundary Point for Polar Grid

CFL3D User’s Manual 119

6.3.4 Embedded Mesh

 6.3.4Embedded Mesh

Regular refinement of coarse mesh

Embedded grids are useful when high gradient areas are limited to an identifiable
region (see reference 25). An embedded grid can be placed in that region to resolve the
flow field without refining the entire mesh. As an example, an embedded grid scheme is
shown in Figure6-22 for two dimensions. The diagram represents full refinement in both
directions. The solid lines define a finer mesh embedded completely within a coarser mesh
depicted by the dashed lines. In the figure, a portion of the flow field is covered by both the
embedded mesh and a portion of the coarser grid. The grids are coupled together during
the solution process. The cell-center variables on a coarser grid cell which underlies a finer
embedded grid cell are replaced with a volume-weighted restriction of variables from the
four (2-d) or eight (3-d) finer grid cells, similar to the restriction operators used in a global
multigrid scheme.

For the embedded grid, the computational boundaries occur either at a physical bound-
ary, such as a wing, a symmetry plane, an inflow/outflow plane along a zonal interface
(one-to-one, patched, or overset), or along an interior computational surface of a coarser
grid. Along an interior surface, two additional lines of data corresponding to an analytical
continuation of the finer grid cell centers are constructed from linear interpolation of the
coarser grid state variables. An enlarged view of the lower-left corner of the embedded

Figure 6-22. Embedded grid example.

Embedded Grid Cell-Center Point

Embedded Grid Boundary Point

Global Grid Cell-Center Point

CHAPTER 6 Boundary Conditions

120 CFL3D User’s Manual

mesh of Figure6-22 is shown in Figure6-23. Arrows indicate which coarse grid points are
used in the linear interpolation scheme to obtain a couple of the boundary points drawn. If
the input parametericonsf = 1 (“LT20 - Mesh Sequencing and Multigrid”), then global
conservation is enforced by replacing the coarse grid flux at an embedded grid boundary
with the sum of the finer grid fluxes which share the common interface. Ificonsf = 0, the
coarse grid flux is computed using the volume-weighted restriction from the fine grid, and
conservation is not insured.

When designing an embedded mesh, it is important to remember that at least two lay-
ers of coarse grid cells should surround the embedded boundaries unless the embedded
boundary is set with a physical boundary condition (e.g. solid wall, plane of symmetry, or
far-field) or a zonal boundary such as a one-to-one, patched, or overset type. In the exam-
ple of Figure6-22, there are two layers of coarse grid cells above and below the embedded
mesh and three layers of coarse grid cells on the left and right sides of the embedded
mesh.

Suppose the grids in Figure6-22 are in an = constant plane. Also,jdim = 9 and
kdim = 7 for the coarse grid andjdim = 5 andkdim = 5 for the embedded mesh. The per-
tinent input would look something like:

Figure 6-23. Enlarged portion of embedded mesh.

Embedded Grid Cell-Center Point

Embedded Grid Boundary Point

Global Grid Cell-Center Point

i

CFL3D User’s Manual 121

6.3.4 Embedded Mesh

Line Type
6 NGRID NPLOT3D NPRINT NWREST ICHK I2D NTSTEP ITA

2 1 0 100 0 0 1 1
7 NCG IEM IADVANCE IFORCE IVISC(I) IVISC(J) IVISC(K)

0 0 0 0 0 0 0
0 1 0 0 0 0 0

8 IDIM JDIM KDIM
21 9 7
41 5 5

10 INEWG IGRIDC IS JS KS IE JE KE
0 0 0 0 0 0 0 0
0 1 1 4 3 21 6 5

20 MSEQ MGFLAG ICONSF MTT NGAM
1 0 1 0 0

22 NCYC MGLEVG NEMBL NITFO
1 1 1 0

In this example, the embedded mesh extends the entire length of the global grid in the
 direction. The dimensions of the embedded mesh must satisfy a particular relationship to

the data in “LT10 - Embedded Mesh Specifications”. The input parametersis, ie, js, je, ks,
andke are indices in the global grid to which the embedded mesh is connected. Thus, the
following must be true:

(6-44)

Analogous relationships hold for the and directions. Note that the only exception to

Equation (6-44) occurs in the direction for 2-d cases, whereis = 2, ie = 1 and

.

There is also an option called “semi-coarsening” in which the number of points in the
 direction are the same for the embedded grid and the global grid in the embedded region.

This is helpful if there are sufficient points in the direction, but grid enrichment in
planes is desirable. There is an internal check for this option and the only change in the
input sample above is to setidim = 21 for the embedded grid as well. Note that semi-
coarsening can only be used in the direction.

Another nice option with grid embedding is to add an embedded grid to a previously-
run coarse grid problem. For instance, suppose a converged coarse grid solution is
obtained and the flow field looks well resolved everywhere except in a vortex region. An
embedded grid for that region can be tacked on to the original grid file and the case
restarted. On thefirst run of the restart, setinewg = 1 for the embedded grid. This lets the
code know that a solution not on the current restart file is beginning. On the next run, the
embedded grid solutionwill be on the restart file, so setinewg = 0.

i

idimembedded 2 ie is–()global 1+=

j k

i

idimembedded idimglobal 2= =

i

i j k–

i

CHAPTER 6 Boundary Conditions

122 CFL3D User’s Manual

